
Prepose: Privacy, Security, and Reliability for
Gesture-Based Programming

Lucas Silva Figueiredo∗ David Molnar † Margus Veanes† and Benjamin Livshits†

Federal University of Pernambuco∗ Microsoft Research†

lsf@cin.ufpe.br {dmolnar,margus,livshits}@microsoft.com

F

Abstract—With the rise of sensors such as the Microsoft Kinect,

gesture-based interfaces have become practical. Unfortunately,

today, to recognize such gestures, applications must have access

to depth and video of the user, exposing sensitive data about

the user and her environment. Besides these privacy concerns,

there are also security threats in sensor-based applications, such

as multiple applications registering the same gesture, leading to

a conflict (akin to Clickjacking on the web).

We address these security and privacy threats with Prepose, a

novel domain-specific language (DSL) for easily building gesture

recognizers, combined with a system architecture that protects

privacy, security, and reliability with untrusted applications. We

demonstrate that Prepose is expressive by creating a total of 28

gestures in three representative domains: physical therapy, tai-

chi, and ballet. We further show that runtime gesture matching

in Prepose is fast, creating no noticeable lag, as measured on

traces from Microsoft Kinect runs.

Index Terms—H.5.1.b [Multimedia Information Systems] Artifi-

cial, augmented, and virtual realities; I.5.4.d [Applications] Face

and gesture recognition; D.4.6 [Operating Systems] Security and

Privacy Protection; K.4.1.d [Public Policy Issues] Human safety

1 Introduction
Over 20 million Kinect sensors are in use today,
bringing millions of people in contact with games and
other applications that respond to voice and gestures.
Other companies such as Leap Motion and Prime
Sense are bringing low-cost depth and gesture sensing
to consumer electronics.

User demand for sensors such as Kinect is driven
by exciting new applications, ranging from immersive
Xbox games to purpose-built shopping solutions to
healthcare applications for monitoring elders. Each
of these sensors comes with an SDK which allows

third-party developers to build new and compelling
applications, and some also use the App Store model
to deliver software to the end-user. Examples of such
stores include Leap Motion’s Airspace airspace.com,
Oculus Platform, and Google Glassware.

These platforms will evolve to support multiple
untrusted applications provided by third parties, run-
ning on top of a trusted core such as an operating
system. Since such applications are likely to be dis-
tributed through centralized App stores, there is a

C# and skeletal data

C++ and raw data

Prepose 
and 

application logic

Fig. 1: Three different levels of data access for un-
trusted applications that perform gesture recogni-
tion. We call out threats to the user at each levels.

1



chance for application analysis and enforcement of
key safety properties. Below we describe some of
the specific threats posed by applications to each
other and to the user. We refer the reader to Loris
D’Antoni [2] for a more comprehensive discussion
of threats. To address these threats, we introduce
Prepose, a novel domain specific language and run-
time for writing gesture recognizers. We designed this
language with semantics in terms of SMT formulas.
This allows us to use the state of the art SMT solver
Z3 both for static analysis and for runtime matching
of gestures to user movements.

1.1 A Case for Controlled Access to Skeletal
Data

Figure 1 summarizes three different levels of func-
tionality for untrusted applications that need gesture
recognition. On the bottom, applications can be
written in languages such as C++ and have access
to raw video and depth. Access to the raw video
stream is seen as highly privacy-sensitive [5, 14]. In
the middle, applications are written in memory-safe
languages such as C# or Java and have access only
to the skeleton API provided by Kinect for Windows.
What is less obvious is that at the middle level, the
skeleton data also leads to potential loss of privacy.
Specifically, the following attacks are possible:

• The skeleton API reveals how many people are
in the room. This may reveal whether the person
is alone or not. If alone, perhaps she is a target
for robbery; if she’s found to be not alone, that
may reveal that she’s involved with someone
illicitly.

• The skeleton API reveals the person’s height
(relative height of joints is exposed, and the
Kinect API allows mapping from skeleton points
to depth space so actual height as well). The
application could distinguish people by “finger-
printing” skeletons.

• The skeleton API reveals fine grained position
of the person’s hands. The application can in
principle learn something about what they write
if they write on a whiteboard, for example.

1.2 Static Analysis for Security & Reliability

At the heart of Prepose is the idea of compiling
gesture descriptions to formulae for an SMT solver

such as Z3 [10]. These formulae capture the semantics
of the gestures, enabling precise analyses that boil
down to satisfiability queries to the SMT solver.
The Prepose language has been designed to be
both expressive enough to support complex gestures,
yet restrictive enough to ensure that key properties
remain decidable. In this paper we focus on the four
properties regarding Reliability and Security which
are summarized as follows:

1) Prepose validates that gestures have a basic
measure of physical safety, i.e. do not require
the user to overextend herself physically in
ways that may be dangerous;

2) Prepose checks for inner contradictions i.e. do
not require the user to both keep her arms up
and down;

3) Prepose tests whether a gesture conflicts with
a reserved system-wide gesture such as the
Kinect attention gesture;

4) Prepose finds potential conflicts within a set
of gestures such as two gestures that would
both be recognized from the same user move-
ments.

1.3 Contributions

Our paper makes the following contributions:

• Prepose. Proposes a programming language
and a runtime for a broad range of gesture-
based immersive applications designed from the
ground up with security and privacy in mind.
Prepose follows the principle of privacy by con-
struction to eliminate the majority of privacy at-
tacks. Additionally, our language syntax is com-
patible with natural language, which increases
its readability and semantics for user guidance
and errors handling. This way, a gesture inner
validity or a safety fault is easier to be read and
corrected.

• Static analysis. We propose a set of static
analysis algorithms designed to soundly find
violations of important security and reliability
properties. This analysis is designed to be run
within a gesture App Store to prevent malicious
third-party applications from affecting the end-
user.

• Expressiveness. To show the expressiveness of
Prepose, we encode 28 gestures for 3 useful

2



application domains: therapy, dance, and tai-chi.

• Performance evaluation. Despite being writ-
ten in a domain-specific language (DSL),
Prepose-based gesture applications pay a min-
imal price for the extra security and privacy
guarantees in runtime overhead; tasks like pose
matching take milliseconds.

We also to wish to point out that the Pre-
pose project is open-sourced at https://github.com/

Microsoft/prepose.

2 Background
2.1 Security and Privacy Threats in AR

Augmented reality (AR) is computing that overlays
artificial objects on top of the human senses such that
the artificial and the real seamlessly blend together.
Today, shipping AR experiences come in form factors
ranging from “magic windows” on phones and tablets
all the way to high end headsets such as the Meta or
the Microsoft HoloLens that add visual and audio
objects to the user’s world.

An example of a magic window is Pokemon Go,
which became an overnight success by asking people
to look through their phones to capture Pokemon,
while moving around in the real world. For the head-
set, an example application is the Microsoft Galaxy
Explorer, which lets the wearer to “fly through” the
solar system and beyond, using eye gaze and gestures
to pick out the next planet to visit.

The rise of fast phone processors, ever-cheaper
MEMS gyroscopes, inertial sensing units, and ad-
vanced high-speed video processing for object reg-
istration means that AR capabilities, which used
to cost hundreds of thousands of dollars, are now
available on commodity phones. Even headsets have
dropped to single thousands of dollars, making them
within reach for enthusiasts and specialized commer-
cial applications alike.

AR raises fundamental new challenges because,
to work properly, applications must continuously
sense the environment, and must overlay artificial
objects on the real world. In most AR applications,
interaction is accomplished through gestures or other
visual recognition, which means that applications
need some kind of access to video streams or they
cannot work. How can we support untrusted appli-
cations, such as in a phone “app store” model or

the Web model with untrusted pages? How can we
prevent applications from maliciously “overwriting”
real world objects or misleading the user?

At the same time, AR has familiar challenges as
well. For example, applications may be written in
game frameworks such as Unity, which has a “com-
ponent store” allowing developers to buy new object
recognition algorithms or specific 3D models, as they
are needed. This store has the same tradeoffs as app
stores on phones, game consoles, and tablets: how
can we enable as many people as possible to sell
components in the store, while still protecting the
end-user from malicious code? What are the right
abstractions and the right tradeoffs to strike? More
generally, this is the problem of safe extensions for a
core platform. For this paper, we focus on extensions
that provide gesture recognition, described more fully
below, because gestures are crucial for interacting
with AR applications.

2.2 Single Application Programming Model

Today, common AR applications assume that a single
application has control of the machine at one time.
The application then typically includes a library that
talks to the hardware, runs object recognition, and
then exposes events to the application for processing.
For example, a Kinect for Windows application in-
cludes a library that talks to the Kinect sensor, runs
a machine learning model to extract the locations
of people in the Kinect’s field of view, and finally
sends an event with detected skeleton positions to the
application. A phone application may use a toolkit
such as Vuforia to recognize markers in the world,
or simply use location services to display relevant
content, as in Pokemon Go. The key aspect of this
model is that the application has complete control of
the device.

2.3 Multiple Applications

Multiple applications sharing the same AR raise a
host of issues, as summarized by D’Antoni et al. [2].
Here, we focus on the problem of safe extensions
for gesture recognition. When there are multiple
programs, it is not possible to give each one exclusive
access to sensor data, such as a raw video or depth
stream. Additionally, with untrusted programs, such
as those found in app stores or on the Web, giving

3



access to the raw sensor stream would reveal private
information about the user. Previous work has ad-
dressed this by restricting access to only recognizers,
special operating system abstractions that encap-
sulate object detection code [5]. The key downside
of this approach is that it requires a fixed set of
recognizers that cannot be changed by applications.

2.4 Programming with Gestures

Today, developers of immersive, sensor-based appli-
cations pursue two major approaches to creating new
gesture recognizers.

• The developer may write custom code in a
general-purpose programming language such
as C++ or C# that checks properties of the
user’s position and then sets a flag if the user
moves in a way to perform the gesture. This
approach is typically reasons about user move-
ments at a low level, requires the tuning of
threshold values, and is not amenable to auto-
matic reasoning.

• The leading alternative to manually-coded ges-
ture recognizers is to use machine learning ap-
proaches. In order to create the recognizer the
developer takes recordings of many different
people performing the same gesture, then tags
the recordings to provide labeled data. However,
gathering the data and labeling it can be ex-
pensive. Training itself requires setting multiple
parameters, where proper settings require famil-
iarity with the machine learning approach used.
The resulting code created by machine learning
may be difficult to interpret or manually“tweak”
to create new gestures. Just as with manually-
written gestures, the resulting code is even more
difficult to analyze automatically and requires
access to sensor data to work properly.

3 Techniques
Prepose applications can be composed out of ges-
tures, and gestures composed out of poses and execu-
tion steps as shown by the following written example:

GESTURE right_shoulder_abduction:

POSE relax_arm:
point your right arm down.

POSE perform_abduction:
rotate your right arm 90 degrees to your right.

EXECUTION:
relax_arm ,
perform_abduction.

Each pose in Prepose is built as a one or more ac-
tions (point, rotate, put, align or touch). By its turn
each action requires specific parameters, for example,
the point action written on the code above requires
a body part (“right arm”) and a direction (“down”).
For researchers who wish to extend Prepose, we
have uploaded an a ANTLR version of the Prepose
grammar to http://binpaste.com/fdsdf.

Interacting with the solver: Prepose compiles
programs written in the Prepose language to for-
mulae in Z3, a state-of-the-art SMT solver. In order
to illustrate interaction with the Z3 solver consider
the statement“put your left elbow behind your neck”.
The analysis we focus on here is that of checking that
executing the gesture does not violate the default
safety restrictions.

The default safety restrictions are stated in
terms of arithmetic constraints on joint coordinates
of the body that is represented by a dictionary
from joints to real-numbered (3D) coordinates
(x, y, z), as well as a dictionary from joints to
norms (or reference coordinates). There are a
total of 25 joints, such as ElbowLeft, KneeRight,
etc., corresponding to the different joint types
in the Kinect API in Microsoft.Kinect.dll.
The interested reader is referred to https:

//github.com/Microsoft/prepose/Z3Experiments/

Z3Experiments/Gestures/Analysis/Safety.cs,
method DefaultSafetyRestriction, for full
details. Real numbers are modeled by rational
numbers in this setting. The clear benefit of this is
that satisfiability checking of the linear arithmetic
constraints that arise as a result of the analysis is
decidable.

First, each pose is checked for internal validity.
This means that the current body constraint (that is
a quantifier-free predicate over the joint constraints)
is transformed according to the pose and the re-
sulting body predicate (that is also a quantifier-
free constraint over the joint constraints since the
transformation does not introduce quantifiers) is
evaluated for satisfiability in conjunction with a de-
fault safety condition. The default safety condition
includes checks such as: neck and hips are not incli-

4



nated beyond a given threshold, hips are aligned with
the shoulders or at lest within a safe range, elbows
are not behind the back and not on the top/back
sub-space, the inclination of wrists towards the back
is not higher than the inclination of the elbows unless
elbows are up or wrists are directed to torso, etc. If
the transformed body constraint is unsatisfiable, this
means that there exists no instance of the coordinates
that would correspond to a concrete safe body posi-
tion, and so the pose is deemed internally invalid.

In this gesture the first pose is in fact internally in-
valid, as the analysis correctly discovers that putting
your left elbow behind your neck is not feasible for a
typical human being. If each pose is internally valid
the poses are composed sequentially. Such sequential
composition corresponds to constructing a predicate
that describes all the possible body positions from
the given initial predicate. Again, the resulting predi-
cate has only positive occurrences of existential quan-
tifiers, i.e., it is essentially quantifier-free, because a
positive occurrence of an existential quantifier corre-
sponds to an uninterpreted constant. Note however,
that negating such a constraint would, in general,
no longer be quantifier-free, if the quantifiers are
treated as existential. The current analysis does not
require operations that would introduce satisfiability
checking of formulas involving universal quantifiers.

Runtime Execution: After a Prepose script is
translated to Z3 constraints, we use the Z3 solver to
match a user’s movements to the gesture. The trusted
core of Prepose registers with the Kinect skeleton
tracker to receive updated skeleton positions of the
user.

For each new position, the runtime uses the Z3
term evaluation mechanism to automatically apply
gestures to the previous user’s position to obtain the
target (in a sense, ideal) position for each potential
gesture. This target position is in turn compared to
the current user’s joints’ position to see if there is a
match and to notify the application.

Upon receiving a notification, the application may
then give feedback to the user, such as encourage-
ment, badges for completing a gesture, or movement
to a more difficult gesture.

3.1 Security and Reliability

By design, Prepose is amenable to sound static rea-
soning by translating queries into Z3 formulae. Below

we show how to convert key security and reliability
properties into Z3 queries. The underlying theory we
use is that of reals. We also use non-recursive data
types (tuples) within Z3. Please remember that these
are static analyses that typically take place before
gestures are deployed to the end-user — there is no
runtime checking overhead.

Unlike approximate runtime matching described
above, static analysis is about precise, ideal match-
ing. We do not have a theory of approximate equality
that is supported by the theorem prover. We treat
gestures such as G : B → B, in other words, as
functions that transform bodies in set B to new
bodies.

Basic gesture safety: A set of restrictions are
applied to ensure the input gesture is safe. The goal of
these restrictions is to make sure we “don’t break any
bones” by allowing the user to follow this gesture. We
define a collection of safety restrictions pertaining to
the head, spine, shoulders, elbows, hips, and legs. We
denote by RS the compiled restriction, the set of all
states that are allowed under our safety restrictions.
The compiled restriction RS is used to test whether
for a given gesture G

∃b ∈ B : ¬RS(G(b))

in other words, does there exist a body which fails
to satisfy the conditions of RS after applying G.
RS restricts the relative positions of the head, spine,
shoulders, elbows, hips, and legs. The restriction for
the head is shown below to give the reader a sense of
what is involved:

var head = new SimpleBodyRestriction(body => {
Z3Point3D up = new Z3Point3D (0, 1, 0);

return Z3.Context.MkAnd(
body.Joints[JointType.Head]

.IsAngleBetweenLessThan(up, 45),
body.Joints[JointType.Neck]

.IsAngleBetweenLessThan(up, 45));
});

Inner validity: We also want to ensure that our
gesture are not inherently contradictory, in other
words, is it the case that all sequences of body
positions will fail to match the gesture. An example
of a gesture that has an inner contradiction, consider

point your arms up,
point your arms down.

5



Obviously both of these requirements cannot be sat-
isfied at once. In the Z3 translation, this will give
rise to a contradiction: joint[”rightelbow”].Y = 1 ∧
joint[”rightelbow”].Y = −1. To find possible con-
tradictions in gesture definitions, we use the following
query:

¬∃b ∈ B : G(b).

Protected gestures: Several immersive sensor-
based systems include so-called “system attention
positions” that users invoke to get privileged access
to the system. These are the AR equivalent of Ctrl-
Alt-Delete on a Windows system. For example, the
Kinect on Xbox has a Kinect Guide gesture that
brings up the home screen no matter which game is
currently being played. The Kinect“Return to Home”
gesture is easily encoded in Prepose and the reader
can see this gesture here: http://bit.ly/1JlXk79. For
Google Glass, a similar utterance is“Okay Glass.”On
Google Now on a Motorola X phone, the utterance
is “Okay Google.”

We want to make sure that Prepose gesture do
not attempt to redefine system attention positions.

∃b ∈ B, s ∈ S : G(b) = s.

where S ⊂ B is the set of pre-defined system atten-
tion positions.

Conflict detection: Conflict detection, in contrast,
involves two possibly interacting gestures G1 and G2.

∃b ∈ B : G1(b) = G2(b).

Optionally, one could also attempt to test whether
compositions of gestures can yield the same outcome.
For example, is it possible that G1 ◦ G2 = G3 ◦ G4.
This can also be operated as a query on sequences of
bodies in B.

4 Experimental Evaluation

We built a visual gesture development and debugging
environment, which we call Prepose Explorer. Fig-
ure 2 shows a screen shot of our tool. On the left, a
text entry box allows a developer to write Prepose
code with proper syntax highlighting. On the right,
the tool shows the user’s current position in green
and the target position in white. On the bottom,
the tool gives feedback about the current pose being

matched and how close the user’s position is to the
target.

4.1 Dimensions of Evaluation

Given that Prepose provides guarantees about se-
curity and privacy by construction, we focused on
making sure that we are able to program a wide range
of applications that involve gestures, as summarized
in Figure 3 and also partially shown in the Appendix.
Beyond that we want to ensure that the Prepose-
based gesture matching scales well to support inter-
active games, etc. To summarize

• We used this tool to measure the expressiveness
of Prepose by creating 28 gestures in three
different domains.

• We then ran some benchmarks to measure run-
time performance and static analysis perfor-
mance of Prepose. First, we report runtime
performance, including the amount of time re-
quired to match a pose and the time to synthe-
size a new target position. Then, we discuss the
results of benchmarks for static analysis.

Prior work has used surveys to evaluate whether
the information revealed by various abstractions is
acceptable to a sample population of users in terms
of its privacy. Here, we are giving the application the
least amount of information required to do its jobs,
so these surveys are not necessary.

4.2 Expressiveness

Because the Prepose language is not Turing-
complete, it has limitations on the gestures it can
express. To determine if our choices in building the
language are sufficient to handle useful gestures,
we built gestures using the Prepose Explorer. We
picked three distinct areas: therapy, tai-chi, and bal-
let, which together cover a wide range of gestures.
Figure 3 shows the breakdown of how many gestures
we created in each area, for 28 in total. These are
complex gestures: the reviewers are encouraged to
examine the code linked to from Figure 3.

Prepose runtime gives feedback not only when the
gesture is completed but also in which part (percent-
age) of the gesture the user is, in real-time. This way,
it is possible to save a full log of the session, storing
knowledge about each execution, even in cases that
the user did not went all the way to the last pose

6



Fig. 2: Screenshot of Prepose Explorer in action.

A
p
p
li
c
a
t
io

n

G
e
s
t
u
r
e
s

P
o
s
e
s

L
O
C

URL

Therapy 12 28 225 http://pastebin.com/ARndNHdu
Ballet 11 16 156 http://pastebin.com/c9nz6NP8
Tai-chi 5 32 314 http://pastebin.com/VwTcTYrW

Fig. 3: We have encoded 28 gestures in Prepose,
across three different applications. The table shows
the number of total poses and lines of Prepose code
for each application. Each pose may be used in more
than one gesture.

of the gesture. Therefore, it is possible for example,
to report to a physiotherapist a detailed execution
of the treatment including the patient performance
even if the gesture was not finished.

Additionally, on the particular case of therapy,
there are exercises which require the user to move
her body segments (e.g.: arms) within the limits of

specific biomechanical body planes (Frontal, Hori-
zontal and Sagittal). Although body planes are not
yet directly supported by Prepose these gestures can
be written as a tight sequence of motions on the same
plane to satisfy these cases. That said, most of the
therapy gestures written on our experiments (such
as the ’crossover left arm stretch’) do not require the
definitions of body planes.

4.3 Pose Matching Performance

We used the Kinect Studio tool that ships with the
Kinect for Windows SDK to record depth and video
traces of one of the authors. We recorded a trace of
performing two representative gestures. Each trace
was about 20 seconds in length and consisted of
about 20,000 frames, occupying about 750 MB on
disk. We picked these to be two representative tai-
chi gestures.

Our measurements were performed on an HP Z820
Pentium Xion E52640 Sandy bridge with 6 cores
and 32 GB of memory running Windows 8.1.

7



For each trace, we measured the matching time:
the time required to evaluate whether the current
user position matches the current target position.
When a match occurred, we also measured the pose
transition time: the time required to synthesize a new
target pose, if applicable.

Our results are encouraging. On the first frame,
we observed matching times between 78 ms and
155 ms, but for all subsequent frames matching time
dropped substantially. For these frames, the median
matching time was 4 ms. with a standard deviation
of 1.08 ms. This is fast enough for real time tracking
at 60 FPS (frames per second).

For pose transition time, we observed a median
time of 89 ms, with a standard deviation of 36.5 ms.
While this leads to a “skipped” frame each time we
needed to create a new pose, this is still fast enough
to avoid interrupting the user’s movements.

While we have made a design decision to use a
theorem prover for runtime matching, one can re-
place that machinery with a custom runtime matcher
that is likely to run even faster. When deploying
Prepose-based applications on a less powerful plat-
form such as the Xbox, this design change may be
justified.

4.4 Static Analysis Performance

Safety checking: On the left of figure 4 shows
a near-linear dependency between the number of
steps in a gesture and time to check against
safety restrictions. Exploring the results further,

Intercept -4.44
NumTransforms 0.73
NumRestrictions -2.42
NumNegatedRestrictions -6.23
NumSteps 29.48

we performed a
linear regression to
see the influence of
other parameters
such as the
number of negative
restrictions. The R2 value of the fit is about 0.9550,
and the coefficients are shown in the table to the
right. The median checking time is only 2 ms. We see
that safety checking is practical and, given how fast
it is, could easily be integrated into an IDE to give
developers quick feedback about invalid gestures.

Validity checking: The middle part of figure 4
shows another near-linear dependency between the
number of steps in a gesture and the time to check if
the gesture is internally valid. The average checking

time is 188.63 ms. We see that checking for internal
validity of gestures is practical and, given how fast
it is, could easily be integrated into an IDE to give
developers quick feedback about invalid gestures.

Conflict checking: We performed pairwise conflict
checking between 111 pairs of gestures from our
domains. The right of figure 4 shows the CDF of
conflict checking times, with the x axis in log scale.
For 90% of the cases, the checking time is below 0.170
seconds, while 97% of the cases took less than 5
seconds and 99% less than 15 seconds. Only one
query out of the 111 took longer than 15 seconds. As
a result, with a timeout of 15 seconds, only one query
would need attention from a human auditor.

5 Related Work
Below we first describe some gesture-building ap-
proaches, mostly from the HCI community, and then
we talk about privacy in sensing-based applications.

5.1 Gesture Building Tools

Below, we list some of the key projects that focus on
gesture creation. Prepose’s approach is unique in
that it focuses on capturing gestures using English-
like commands. This allows gesture definitions to be
modified more easily. Prepose differs from the tools
below in that it focuses on security and privacy at
the level of system design.

Proton [8] and Proton++ [7] present a tool di-
rected to multitouch gestures description and recog-
nition. The gestures are modeled as regular expres-
sions and their alphabet consists of the main actions
(Down, Move and Up), and related attributes e.g.:
direction of the move action; place or object in
which the action was taken; counter which represents
a relative ID; among others. It is shown that by
describing gestures with regular expressions and a
concise alphabet it is possible to easily identify am-
biguity between two gestures previously to the test
phase.

Zhao et al. [15] proposes a rule-based gesture
recognizer for the physiotherapy domain. It exposes
rules as an XML considering joints positions and
the corresponding bones orientations. The ‘hip ab-
duction’ gesture is demonstrated in 48 lines of XML
code, which allows later edition and refinement of the
gesture.

8



100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
1 10 100 1,000 10,000 100,000

97% of checks 

are faster than 

5 seconds

600

500

400

300

200

100

0

0 2 4 6 8 10 12 14 160 2 4 6 8 10 12 14 16

500

450

400

350

300

250

200

150

100

50

0

Safety Checking Validity Checking CDF of Conflict Checking

Fig. 4: On the right part the time to check for safety, in ms, as a function of the number of steps in the
underlying gesture. On the middle the time to check internal validity, in ms, as a function on the number
of steps in the underlying gesture. On the left the time to check for conflicts for a pair of gestures presented
as a CDF. The x axis is seconds plotted on a log scale.

GDL [3] presents a DSL for gesture description.
Rules are written using the language, and are de-
fined by cause (specific body conditions) and effect
(resulting Boolean value). GDL uses a near gen-
eral programming syntax as shown on the following
sample code: RULE RightElbow.x[0] > Torso.x[0]
& abs(RightShoulder.y[0] - RightElbow.y[0]) < 50
THEN RightArmGestureName. The rules can be
either logical or numerical, allowing the developer
to set thresholds for specific conditions. Rules can
be connected by using the effect of previous rules as
input.

Hoste and Signer [4] analyze several gesture pro-
gramming languages including Proton and GDL and
propose 30 criteria to classify these solutions as well
as enhance the discussion about their limitations and
future possibilities. The criteria include topics like
readability, reliability, customization and scalability
in terms of performance.

5.2 Sensing and Privacy

The majority of work below focuses on privacy con-
cerns in sensing applications. In Prepose, we add
some security concerns into the mix, as well.
SurroundWeb [14] presents an immersive

browser which tackles privacy issues by reducing
the required privileges. The concept is based on
a context sensing technology which can render
different web contents on different parts of the

room. In order to prevent the web pages to access
the raw video stream of the room, SurroundWeb
is proposed as a rendering platform through the
Room Skeleton abstraction (which consists on
a list of possible room “screens”). Moreover the
SurroundWeb introduces a Detection Sandbox as
a mediator between web pages and object detection
code (never telling the web pages if objects were
detected or not) and natural user inputs (mapping
the inputs into mouse events to the web page).

Darkly [6] proposes a privacy protection system
to prevent access of raw video data from sensors to
untrusted applications. The protection is performed
by controlling mechanisms over the acquired data. In
some cases the privacy enforcement (transformations
on the input frames) may reduce application func-
tionality.

OS Support for AR Apps [2] and AR Apps with
Recognizers [5] discusses the access the AR appli-
cations usually have to raw sensors and proposes
OS extension to control the sent data by performing
the recognizer tasks itself. This way the recognizer
module is responsible to gather the sensed data and
to process it locally, giving only the least needed
privileges to AR applications.

Recent work on world-driven access control re-
stricts sensor input to applications in response to the
environment, e.g. it can be used to disable access to
the camera when in a bathroom [12].

9



6 Summary and Looking Forward

This paper provides a foundation for programming
and reasoning about gesture safety, security, and
privacy. While this paper assumes that the developer
will author the gesture code, we envision numer-
ous possibilities related to automatically inferring
Prepose programs by demonstration [1, 9, 11]. This
approach has been used in several other areas of
programming, in interacting with users who are not
necessarily technologically sophisticated. In our con-
text, we can readily foresee useful training scenarios
such as the two below:

• a personal trainer at a gym demonstrating a per-
sonalized workout program, which gets notated
as Prepose gestures and given to the gym goes
to use at home for exercises during the week;

• a doctor working with patients with limited
mobility who works on adaptation of user inter-
faces [13]. The doctor can demonstrate a gesture
that corresponds to a mouse double-click and
have that recorded by Prepose, etc.

In both of these cases, a intermediary specialist is
working with a Prepose-equipped Kinect sensor,
whose goal is to learn Prepose gestures for later
use by end-users.

Acknowledgments

We would like to express our gratitude to our collab-
orators working on the Kinect platform at Microsoft.
We also thank the anonymous reviewers, whose input
has made this paper a great deal stronger.

Authors

Lucas Silva Figueiredo

Lucas Silva Figueiredo is a research leader at the
Voxar Labs on the Federal University of Pernam-
buco (UFPE) in Brazil. He is currently finishing
his Ph.D. in Computer Science on the Informatics
Center/UFPE. Obtained his MSc and BSc in Com-
puter Science on the same Center. During his Ph.D.,
in 2014, Lucas spent three months as a research
intern on Microsoft Research - Redmond, conducting
research related to real time gesture recognition for
user interaction and postural analysis. His research
interests include Augmented and Virtual Reality,
Gesture Recognition, Computer Vision and Natural

Interaction. Lucas works in R&D&I projects since
2008. Currently he is conducting a research project
for real-time in-air gestures recognition inside Voxar
Labs.

Margus Veanes

Margus is a senior researcher at Microsoft Research
Redmond doing research in symbolic automata the-
ory with applications to program analysis and ver-
ification. His research interest range from formal
language theory to program verification and opti-
mization techniques powered by modern logical infer-
ence engines. Margus received his PhD in Computer
Science from Uppsala University and is a professional
member of IEEE and ACM.

David Molnar

I lead ”Project Springfield”, which packages pioneer-
ing technology and best practices from Microsoft into
a cloud service everyone can use. Project Spring-
field builds on the ”whitebox fuzzing” technology
invented by Patrice Godefroid and colleagues at
Microsoft, putting it into a cloud service run by
William Blum and our engineering team. Learn more
about Project Springfield and sign up for a preview
at https://www.microsoft.com/springfield (and our
team site, coming soon!)

Prior to Project Springfield, I spent several years
in the Security and Privacy Group at the Microsoft
Research Redmond lab. Before MSR, I spent several
years at the University of California Berkeley, where I
finished a PhD with David Wagner. My area of focus
is software security : software is eating the world, so
if there’s a problem with software, then the software
might accidentally eat us. How can we manage this
risk from security critical software errors?

Benjamin Livshits

Ben Livshits is a research scientist at Microsoft Re-
search in Redmond, WA and an affiliate professor
at the University of Washington. Originally from St.
Petersburg, Russia, he received a bachelor’s degree in
Computer Science and Math from Cornell University
in 1999, and his M.S. and Ph.D. in Computer Science
from Stanford University in 2002 and 2006, respec-
tively. Dr. Livshits’ research interests include appli-
cation of sophisticated static and dynamic analysis
techniques to finding errors in programs.

10



Ben has published papers at PLDI, POPL, Oak-
land Security, Usenix Security, CCS, SOSP, ICSE,
FSE, and many other venues. He is known for his
work in software reliability and especially tools to
improve software security, with a primary focus on
approaches to finding buffer overruns in C programs
and a variety of security vulnerabilities (cross-site
scripting, SQL injections, etc.) in Web-based applica-
tions. He is the author of over 100 academic papers;
Ben has also received dozens of patents and multiple
tech transfer awards for bringing research in practice.
Lately, he has been focusing on topics ranging from
security and privacy to crowdsourcing an augmented
reality. Ben generally does not speak of himself in the
third person.

References
[1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot

programming by demonstration. In Springer handbook of
robotics, pages 1371–1394. Springer, 2008.

[2] L. D’Antoni, A. Dunn, S. Jana, T. Kohno, B. Livshits,
D. Molnar, A. Moshchuk, E. Ofek, F. Roesner, S. Saponas,
et al. Operating system support for augmented reality
applications. Hot Topics in Operating Systems (HotOS),
2013.

[3] T. Hachaj and M. R. Ogiela. Rule-based approach to
recognizing human body poses and gestures in real time.
Multimedia Systems, 20(1):81–99, 2014.

[4] L. Hoste and B. Signer. Criteria, challenges and opportu-
nities for gesture programming languages. Proc. of EGMI,
pages 22–29, 2014.

[5] S. Jana, D. Molnar, A. Moshchuk, A. Dunn, B. Livshits,
H. J. Wang, and E. Ofek. Enabling fine-grained permis-
sions for augmented reality applications with recognizers.
In Proceedings of the USENIX Security Symposium, 2013.

[6] S. Jana, A. Narayanan, and V. Shmatikov. A Scanner
Darkly: Protecting user privacy from perceptual applica-
tions. In IEEE Symposium on Security and Privacy, 2013.

[7] K. Kin, B. Hartmann, T. DeRose, and M. Agrawala.
Proton++: A customizable declarative multitouch frame-
work. In Proceedings of the Symposium on User Interface
Software and Technology, 2012.

[8] K. Kin, B. Hartmann, T. DeRose, and M. Agrawala.
Proton: Multitouch gestures as regular expressions. In
Proceedings of the Conference on Human Factors in Com-
puting Systems, 2012.

[9] H. Lü and Y. Li. Gesture coder: a tool for programming
multi-touch gestures by demonstration. In Proceedings of
the ACM Conference on Human Factors in Computing
Systems (CHI), 2012.

[10] L. D. Moura and N. Bjorner. Z3: An Efficient SMT Solver.
In Tools and Algorithms for Construction and Analysis of
Systems (TACAS), 2008.

[11] C. G. Nevill-Manning. Programming by demonstration.
New Zealand Journal of Computing, 4(2):15–24, 1993.

[12] F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, and H. J.
Wang. World-driven access control. In ACM Conference
on Computer and Communications Security, 2014.

[13] E. A. Suma, D. M. Krum, B. Lange, S. Koenig, A. Rizzo,
and M. Bolas. Adapting user interfaces for gestural in-
teraction with the flexible action and articulated skeleton
toolkit. Computers and Graphics, pages 193–201, 2012.

[14] J. Vilk, D. Molnar, E. Ofek, C. Rossbach, B. Livshits,
A. Moshchuk, H. J. Wang, and R. Gal. SurroundWeb:
Mitigating Privacy Concerns in a 3D Web Browser . In
Proceedings of the Symposium on Security and Privacy,
2015.

[15] W. Zhao, R. Lun, D. D. Espy, and M. Reinthal. Rule
based realtime motion assessment for rehabilitation exer-
cises. In Computational Intelligence in Healthcare and e-
health (CICARE), 2014 IEEE Symposium on, pages 133–
140. IEEE, 2014.

11


